If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x^2=4
We move all terms to the left:
3x^2+5x^2-(4)=0
We add all the numbers together, and all the variables
8x^2-4=0
a = 8; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·8·(-4)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*8}=\frac{0-8\sqrt{2}}{16} =-\frac{8\sqrt{2}}{16} =-\frac{\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*8}=\frac{0+8\sqrt{2}}{16} =\frac{8\sqrt{2}}{16} =\frac{\sqrt{2}}{2} $
| d/5=120 | | 4(2g+1)=28 | | f-21=77 | | 3=w/2–2 | | 4(-1x+10)=24 | | 5u−3=22 | | 28+x=152 | | 170/7=x | | -3(2a-1)=3-6a | | 10x+7x+4=0 | | 8(3y-2)=3(10-y0+35 | | 7y−5=51 | | y=252+9(7) | | 6x+9-6x=-2 | | 9x+63=360 | | 6.5x-4.8(x-1)=7.1 | | 5x•13=5x•23 | | -7+n=-n-1 | | 30+x=180= | | x+8-4x-7= | | 6−8z=14 | | 30+x=90= | | (x+7)(x+2)=14 | | 2(7-3z)=2(10-5z) | | 1/2+y=20 | | 40+2x+4=180 | | 7(v–6)+17=50–8v. | | 8c×=3 | | 4(2x+5)=7(6=x) | | 4.3x-2.5(x-1)=6.8 | | 1/32^x=4^(2x-5) | | 14d=714 |